An adaptive multiphase approach for large unconditional and conditional p-median problems

نویسندگان

  • Chandra Ade Irawan
  • Saïd Salhi
  • Maria Paola Scaparra
چکیده

A multiphase approach that incorporates demand points aggregation, Variable Neighbourhood Search (VNS) and an exact method is proposed for the solution of large-scale unconditional and conditional p-median problems. The method consists of four phases. In the first phase several aggregated problems are solved with a “Local Search with Shaking” procedure to generate promising facility sites which are then used to solve a reduced problem in Phase 2 using VNS or an exact method. The new solution is then fed into an iterative learning process which tackles the aggregated problem (Phase 3). Phase 4 is a post optimisation phase applied to the original (disaggregated) problem. For the p-median problem, the method is tested on three types of datasets which consist of up to 89,600 demand points. The first two datasets are the BIRCH and the TSP datasets whereas the third is our newly geometrically constructed dataset that has guaranteed optimal solutions. The computational experiments show that the proposed approach produces very competitive results. The proposed approach is also adapted to cater for the conditional p-median problem with interesting results.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hybrid meta-heuristics with VNS and exact methods: application to large unconditional and conditional vertex p-centre problems

Large-scale unconditional and conditional vertex p-centre problems are solved using two meta-heuristics. One is based on a three-stage approach whereas the other relies on a guided multi-start principle. Both methods incorporate Variable Neighbourhood Search, exact method, and aggregation techniques. The methods are assessed on the TSP dataset which consist of up to 71,009 demand points with p ...

متن کامل

A limited memory adaptive trust-region approach for large-scale unconstrained optimization

This study concerns with a trust-region-based method for solving unconstrained optimization problems. The approach takes the advantages of the compact limited memory BFGS updating formula together with an appropriate adaptive radius strategy. In our approach, the adaptive technique leads us to decrease the number of subproblems solving, while utilizing the structure of limited memory quasi-Newt...

متن کامل

Conditional Posterior Cramér-Rao Lower Bounds for Nonlinear Sequential Bayesian Estimation

Posterior Cramér-Rao lower bounds (PCRLBs) [1] for sequential Bayesian estimators provide a performance bound for a general nonlinear filtering problem. However, the unconditional PCRLB [1] is an off-line bound whose corresponding Fisher information matrix (FIM) is obtained by taking the expectation with respect to all the random variables, namely the measurements and the system states. As a re...

متن کامل

Powerful Exact Unconditional Tests for Agreement between Two Raters with Binary Endpoints

Asymptotic and exact conditional approaches have often been used for testing agreement between two raters with binary outcomes. The exact conditional approach is guaranteed to respect the test size as compared to the traditionally used asymptotic approach based on the standardized Cohen's kappa coefficient. An alternative to the conditional approach is an unconditional strategy which relaxes th...

متن کامل

An Adaptive Approach to Increase Accuracy of Forward Algorithm for Solving Evaluation Problems on Unstable Statistical Data Set

Nowadays, Hidden Markov models are extensively utilized for modeling stochastic processes. These models help researchers establish and implement the desired theoretical foundations using Markov algorithms such as Forward one. however, Using Stability hypothesis and the mean statistic for determining the values of Markov functions on unstable statistical data set has led to a significant reducti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • European Journal of Operational Research

دوره 237  شماره 

صفحات  -

تاریخ انتشار 2014